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The study of gene expression profiling of cells and tissue has become a major tool for discovery in
medicine. Microarray experiments allow description of genome-wide expression changes in health

and disease. The results of such experiments are expected to change the methods employed in the
diagnosis and prognosis of disease in obstetrics and gynecology. Moreover, an unbiased and sys-
tematic study of gene expression profiling should allow the establishment of a new taxonomy of

disease for obstetric and gynecologic syndromes. Thus, a new era is emerging in which reproduc-
tive processes and disorders could be characterized using molecular tools and fingerprinting. The
design, analysis, and interpretation of microarray experiments require specialized knowledge that

is not part of the standard curriculum of our discipline. This article describes the types of studies
that can be conducted with microarray experiments (class comparison, class prediction, class dis-
covery). We discuss key issues pertaining to experimental design, data preprocessing, and gene
selection methods. Common types of data representation are illustrated. Potential pitfalls in

the interpretation of microarray experiments, as well as the strengths and limitations of this tech-
nology, are highlighted. This article is intended to assist clinicians in appraising the quality of the
scientific evidence now reported in the obstetric and gynecologic literature.
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DNA microarrays can simultaneously measure the
expression level of thousands of genes within a partic-
ular mRNA sample.1,2 Such high-throughput expression
profiling can be used to compare the level of gene tran-
scription in clinical conditions in order to: 1) identify
diagnostic or prognostic biomarkers; 2) classify diseases
(eg, tumors with different prognosis that are indistin-
guishable by microscopic examination); 3) monitor the
response to therapy; and 4) understand the mechanisms
involved in the genesis of disease processes.3-26 For these
reasons, DNA microarrays are considered important
tools for discovery in clinical medicine.
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Figure 1 Schematic representation of the steps involved in microarrays. A, The upper panel illustrates the two channel technology
while the B, lower panel illustrates the single channel technology. The experiment is designed to compare the mRNA expression

profile of placentas from women with normal pregnancy with that of placentas from patients with pre-eclampsia (disease).
mRNA from the placenta is extracted. In panel A, the normal and disease mRNA are labeled with two different dyes, mixed
and then hybridized on the same array. After washing, the array is scanned at two different wavelengths to yield two images: one

for the placenta of a normal patient and one for the placenta of a patient with pre-eclampsia. In panel B (single channel), each sample
is labeled with the same fluorescent dye, but independently hybridized on different arrays.
The key physicochemical process involved in micro-
arrays is DNA hybridization.27-29 Two DNA strands
hybridize if they are complementary to each other,
according to the Watson-Crick rules (adenine binds to
thymine, cytosine binds to guanine). DNA hybridization
has been central to the development of modern
molecular biology and is the basis for Northern and
Southern blot analysis. In Southern blot analysis, a
small string of DNA hybridizes to a complementary
fragment of DNA that has been previously separated ac-
cording to molecular weight (size) by gel electrophoresis.
In Northern blot analysis, oligonucleotides are used to
hybridize to messenger RNA (mRNA). These methods
(Southern and Northern blot analysis) use radioactive
probes. In Northern blot analysis, the amount of radio-
activity is a function of the amount of probe hybridized,
which reflects the amount of mRNA in the sample.
Southern and Northern blot analyses are run in a gel
one gene at a time.

A DNA array can be considered as a large parallel
Southern or Northern blot analysis (instead of a gel, the
probes are attached to an inert surface, which will
become the microarray).27 mRNA is extracted from
tissues or cells, reversed-transcribed and labeled with a
dye (usually fluorescent), and hybridized on the array,
as shown in Figure 1. Hybridization and washes are per-
formed under high stringency conditions to minimize
the likelihood of cross-hybridization between similar
genes.28 The next step is to generate an image using
laser-induced fluorescent imaging.28 The principle be-
hind the quantification of expression levels is that the
amount of fluorescence measured at each sequence-
specific location is directly proportional to the amount
of mRNA with complementary sequence present in the
sample analyzed. These experiments do not provide
data on the absolute level of expression of a particular
gene (true concentrations of mRNA), but are useful to
compare the expression level among conditions and
genes (eg, health vs disease).28

Types of microarrays

Microarrays can be broadly classified according to at
least three criteria: 1) length of the probes; 2) manu-
facturing method; and 3) number of samples that can be
simultaneously profiled on one array.
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According to the length of the probes, arrays can be
classified into ‘‘complementary DNA (cDNA) arrays,’’
which use long probes of hundreds or thousands of base
pairs (bps), and ‘‘oligonucleotide arrays,’’ which use short
probes (usually 50 bps or less). Manufacturing methods
include: ‘‘deposition’’ of previously synthesized sequences
and ‘‘in-situ synthesis.’’ Usually, cDNA arrays are man-
ufactured using deposition, while oligonucleotide arrays
are manufactured using in-situ technologies. In-situ
technologies include: ‘‘photolithography’’ (eg, Affymetrix,
Santa Clara, CA), ‘‘ink-jet printing’’ (eg, Agilent, Palo
Alto, CA), and ‘‘electrochemical synthesis’’ (eg, Combi-
matrix, Mukilteo, WA). The third criterion for the clas-
sification of microarrays refers to the number of samples
that can be profiled on one array. ‘‘Single-channel
arrays’’ analyze a single sample at a time, whereas
‘‘multiple-channel arrays’’ can analyze two or more sam-
ples simultaneously. An example of an oligonucleotide,
single-channel array is the Affymetrix GeneChip.

In general, the term ‘‘probe’’ is used to describe the
nucleotide sequence that is attached to the microarray
surface. The word ‘‘target’’ in microarray experiments
refers to what is hybridized to the probes.

Types of studies that can be conducted
with DNA microarrays

There are three major types of applications of DNA
microarrays in medicine. The first involves finding
differences in expression levels between predefined
groups of samples. This is called a ‘‘class comparison’’
experiment (eg, identification of genes differentially
expressed in the placentas from normal pregnant women
and women with pre-eclampsia).

A second application, ‘‘class prediction,’’ involves
identifying the class membership of a sample based on
its gene expression profile. An example would be to
predict whether or not a patient has (or will develop)
pre-eclampsia based on her blood expression profile.
This requires the construction of a classifier (a mathe-
matical model) able to analyze the gene expression
profile of a sample and predict its class membership.
The classifier is constructed based on a representative set
of samples with known class membership (eg, women
with normal pregnancy and those who subsequently
develop pre-eclampsia). This classifier will then be used
to assess the likelihood of developing pre-eclampsia in
patients not included in construction of the classifier.

The third type of application involves analyzing
a given set of gene expression profiles with the goal of
discovering subgroups that share common features. This
application is known as ‘‘class discovery.’’ For example,
the expression profiles of a large number of women with
pre-eclampsia will be measured with the goal of identi-
fying subgroups of patients who have a similar gene
expression profile. This effort is conducted to generate
a molecular taxonomy of disease. In other words, how
many molecular types of pre-eclampsia (subgroups) are
in a sample of women affected by the disease?

In class comparison and class discovery studies, the
expression characterization of the groups (eg, health vs
disease) is often followed by ‘‘functional profiling.’’30

The purpose of this task is to gain insight into the bio-
logical processes that are altered in the disease under
study (see page 382).

Data preprocessing

Once the microarrays have been hybridized, the result-
ing images are used to generate a dataset. This dataset
needs to be ‘‘preprocessed’’ prior to the analysis and
interpretation of the results. Preprocessing is a step that
extracts or enhances meaningful data characteristics and
prepares the dataset for the application of data analysis
methods. A typical example of preprocessing is taking
the logarithm of the raw intensity values. ‘‘Normaliza-
tion’’ is a particular type of preprocessing performed in
order to account for systematic differences across data-
sets. An example of normalization is modifying the raw
intensity values in order to compensate for the different
dye efficiency in two channel microarray experiments
using Cy3 (green) and Cy5 (red).

Background correction
The background correction is designed to adjust for
non-specific hybridization, ie, hybridization of sample
transcripts (targets) whose sequences do not perfectly
match those of the probes on the array. On spotted
arrays, the non-specific hybridization included in the
raw intensity values can be estimated from the fluores-
cence level in the immediate vicinity of the probe.31 An
alternative approach involves using exogenous negative
control spots (eg, Arabidopsis DNA probes, a plant,
for a human array). On Affymetrix arrays, on which
the probes cover the entire surface of the array, the
background level may be estimated from ‘‘mismatch
probes.’’32 Mismatch probes are identical to the ‘‘perfect
match probes,’’ except for a single base pair placed in
the middle of the probe sequence. Thus, the intensity
levels measured on the mismatch probes provide infor-
mation about the level of non-specific hybridization.

There are other alternatives to background correction
on high density arrays.33,34 For example, artificial back-
ground values can be derived using computational tech-
niques that model the distribution of the observed
intensity values.

Other data transformations
After background correction, the data is generally log-
transformed.35,36 The log transformation improves the
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characteristics of the data distribution and allows the
use of classical parametric statistics for analysis. With
two-channel arrays, the intensity values of the two

Figure 2 Examples of graphic display of expression profiling

data obtained from one cDNA array (two channel technol-
ogy). A shows a scatter plot of log-intensity values of the sam-
ple labeled with red dye (log(R)) versus the log-intensity

values of the sample labeled with green dye (log[G]). The
green channel may contain data derived from a normal pla-
centa, while the data on the red channel may be derived
from a patient with pre-eclampsia. Note that some genes are

up-regulated in the red channel (pre-eclampsia). B is a different
representation of the same data. The vertical axis is the log-ratio
M = log(R/G) (log fold change), while the horizontal axis rep-

resents the average log-intensity AZlogRClogG
2 : This representa-

tion is also known as aM vs. A plot. These two types of displays
are frequently found in papers reporting microarray experiment

results.
competing samples are expressed as ratios and then
log-transformed. In contrast, with single-channel tech-
nology (eg, Affymetrix), the ‘‘absolute’’ expression level
of the genes is log-transformed. Logarithmic-transfor-
mation also converts multiplicative error into additive
error.37

Two channel cDNA data are often displayed in
scatter plots showing the log-intensity of the genes
in one sample plotted against the log-intensities in
the other sample. An alternative method to display the
data38 is to plot the difference of the log-intensity of the
two channels

�
MZlogR� logGZlogRG

�
; also called log-

ratio, against the average log-intensities
�
AZlogRClogG

2

�
;

as illustrated in Figure 2. Similar plots can be obtained
with data from two single-channel arrays.

Normalization
Normalization is a preprocessing step that aims to cor-
rect for systematic differences between genes or arrays.
For example, in a two-color cDNA array, the raw
intensities of the sample labeled with the green dye (Cy3)
may appear consistently higher than those of the sample
labeled with the red dye (Cy5). Because of this, merely
considering the ratios between the red and green inten-
sities would not accurately reflect the ratios between the
amounts of mRNA in the sample. This imbalance be-
tween the two channels is known as ‘‘dye bias.’’39

On Affymetrix arrays, the intensities of the probes on
a given array can be consistently higher or lower than
those on other arrays. Such differences are collectively
referred to as ‘‘array bias.’’ Therefore, comparing the
intensities of the same probe(s) on the different arrays
can introduce serious errors if a normalization step is
not performed first. Several methods have been pro-
posed to address this issue.34,40

Another example of systematic bias is a ‘‘spatial
bias,’’ which is manifested by a strong dependence of
the intensity level of the probes on their spatial location
(Figure 3).

The specific normalization techniques depend on the
array technology used. Abundant literature is available
on the subject.34,38,40-56

Freely available software tools for microarray data
preprocessing have been developed under the Biocon-
ductor project.57 Bioconductor includes the best known
algorithms for preprocessing microarray data, such as
MAS 5.0,32 Robust Microarray Average (RMA)34 and
GC-RMA33 for single channel arrays, and LOESS nor-
malization52,58 for two-channel arrays.

Class comparison studies

Class comparison studies are undertaken in order to
compare the gene expression profiles of two or more
groups of patients. For example, it is possible to
compare the transcriptome of healthy vs diseased
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individuals,59 treated vs untreated patients,60 or those of
long- vs short-term survival patients,61 etc. Careful de-
sign of the experiment, explicit hypothesis formulation,
and an adequate sample size are required to obtain
valid conclusions.

Design of the experiment
The simplest experimental design when using cDNA
arrays is called a ‘‘reference design.’’ The mRNA
extracted and reverse-transcribed from each patient is
labeled with the same color dye and hybridized against
a reference mRNA. Therefore, there will be one array
for each sample (patient). A criticism of this experimen-
tal design is that the least interesting sample, the
reference, is measured several times, while each inter-
esting sample is only measured once.62,63 Advantages of
this design include its simplicity as well as flexibility. If
more samples are added in the future, a new analysis
can include both new and old arrays.

An alternative experimental design when using
cDNA arrays is the ‘‘loop design.’’ This design uses a
loop of experiments in which each sample is hybridized
twice, once with each color dye, against other varieties.64

Advantages of this design include an improved statisti-
cal power which sometimes can be crucial. Disadvan-
tages include the complexity of analysis, the sensitivity
to loss of data, and the difficulty in adding new samples
not previously studied. Classical statistical designs, such
as ‘‘complete’’ and ‘‘incomplete block,’’ can and have
been used very successfully in this area.65

In single channel microarray experiments (eg, Affy-
metrix), each biological sample is hybridized on a
different array and yields an independent measurement
for each transcript. Such independent measurements are
convenient because they can be easily analyzed.

Irrespective of the technology used, replication is key
for the success of microarray experiments. There are two
types of replications. One is the ‘‘technical replication,’’
in which the same biological sample is assayed several
times. This effort allows a quality assessment. However,
the more important type of replication is the ‘‘biological
replication,’’ which refers to measuring multiple inde-
pendent biological samples for each category of interest.

Statistical hypothesis testing
In a class comparison experiment, the goal is to identify
the genes that are differentially expressed between two
groups. The ‘‘null hypothesis’’ is that a given gene on
the array is not differentially expressed between the
two conditions under study (normal pregnancy vs pre-
eclampsia). The ‘‘alternative hypothesis’’ (or ‘‘research
hypothesis’’) is that the expression level of that gene is
different between the two conditions. The hypothesis
testing is performed by calculating a ‘‘statistic’’ (eg, the
t-statistic) on the expression values of the gene of
interest measured in the two groups. The computed
value of the statistic is then compared with a threshold
ta, calculated from a model (eg, the t-distribution) and
a desired ‘‘significance level’’ (eg, 1%).

There are two types of errors considered in hypoth-
esis testing: ‘‘Type I’’ and ‘‘Type II.’’ A Type I error
occurs when the null hypothesis is incorrectly rejected.
In medicine, if the null hypothesis is associated with
‘‘health’’ and the research hypothesis is associated with
‘‘disease,’’ a Type I error corresponds to a ‘‘false
positive,’’ ie, to an incorrect diagnosis of a healthy
patient. A Type II error occurs when the null hypothesis
is not rejected when, in fact, it is false. In the previous
example, a Type II error would correspond to a ‘‘false
negative’’ result, ie, a subject having the disease is
labeled as healthy. However, the exact meaning of a
false positive and a false negative result depends on the
definition of the null hypothesis. In microarray experi-
ments, if the null hypothesis is defined as stated in the
previous paragraph, a false positive result occurs if the
given gene is identified as differentially expressed, while
in reality it is not so. A false negative result is failing to
identify the gene as differentially expressed when the
gene is actually so.

The significance level (alpha) should be chosen at the
beginning of the experiment before the data becomes
available, and represents the percentage of Type I error

Figure 3 Two heat maps illustrating the spatial bias problem
in 4 sub-arrays of a cDNA array. Each colored element corre-
sponds to one gene. Positive log-ratios (log fold change) are

shown in red, while negative log-ratios are shown in green.
The top panel shows that most probes in the lower halves of
the sub-arrays are positive (higher expression in the red chan-

nel). The bottom panel shows the same data after a spatial nor-
malization algorithm50 has been applied to remove this bias
(artifact).
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that the investigator is prepared to accept. A chosen
significance level of 1% means that, on average, there
will be one false positive gene for every 100 genes
identified as differentially expressed. The ‘‘statistical
power’’ of a technique is a measure of its ability to
identify true positives.

Gene selection methods
Historically, the first method used to identify differen-
tially expressed genes was the ‘‘fold change.’’ A change
of at least two-fold (up or down) was considered
meaningful.66-68 However, the two-fold threshold was
arbitrarily chosen. The arbitrary selection of this thresh-
old may give rise to both false negative and false positive
results. Some genes, such as transcription factors, could
have important biological effects even though their
change in expression is less than two-fold.

The fold change of a given gene measured in two
samples is calculated by dividing the two measured
intensities and is, therefore, referred to as a ratio. These
raw ratios are generally log-transformed (usually log2).
This is expected to give a mean log-ratio of zero and im-
prove the symmetry of the data distribution. This means
that a two-fold up- or down-regulation in gene expres-
sion is equivalent to log-ratios of C1 or �1, respectively
(see Figure 4 for the graphical representation of these
concepts).

The popularity of the fold change as a method to
select differentially expressed genes is due to its simplic-
ity. In addition, in biology, it is generally believed that
the greater the magnitude of change, the higher the
likelihood of physiologic or pathologic significance.
However, this is not always the case (see above). The
fold change method does not take into account the
variance of the expression values measured. Therefore,
it is no longer the recommended method for gene selec-
tion unless used in combination with other sound
statistical methods.

Hypothesis testing is required for a proper selection
of differentially expressed genes.42,69-72 This involves the
formulation of a null and research hypothesis for every
gene. A widely used statistical model is the t-distribution
and its variants. A t-test compares the difference in the
mean expression levels between the two groups, taking
into account the variability of the data (difference in
means between groups divided by the standard devia-
tion). However, the standard deviation can be very small
(approaching zero) simply by chance. When the denom-
inator approaches zero, the value of the t-statistic be-
comes large and, therefore, the gene appears to be highly
significant when, in reality, it may not be so. For this
reason, a family of improved t-tests has been developed.
Examples include the ‘‘moderated t-statistic’’73-75 and
the ‘‘S statistic’’ (used in the SAM software).76 The
key difference between a standard t-statistic and these
newer statistics is that the latter estimate variability by
taking into account information not only from the
gene tested, but also from other genes displaying a sim-
ilar magnitude of change. This is equivalent to the
‘‘shrinkage’’ of the estimated sample variances toward
a pooled estimate, resulting in a more stable inference
when the number of measurements (arrays) is small.74

Figure 4 illustrates two methods for gene selection
using a public dataset: fold change and a moderated
t-test.57

Other gene selection methods include the ‘‘unusual
ratio method,’’77 the ‘‘noise sampling method,’’78,79 and
analysis of variance (ANOVA).42,70 The latter can also
be used when comparing more than two groups. Studies
comparing these methods are available.69,70

A major problem in the analysis of microarray data is
that many hypotheses are tested simultaneously. More
precisely, testing the differential expression of each gene
in the array involves one hypothesis. The number of
genes represented in a commercially available array is
on the order of tens of thousands. Since any hypothesis
testing involves accepting the existence of false positives,
when so many hypotheses are tested in parallel, a
correction becomes necessary. This is easily understood
if we recall that the statistical hypothesis testing method
introduces a percentage of false positives equal to the
chosen significance threshold. A significance threshold
of 1% used to test the differential expression of 20,000
genes on an array on which there are no truly differen-
tially expressed genes will nevertheless yield 200 false
positives.42 Although methods to correct for multiple
comparisons have been available for a long time80-86

(eg, Bonferroni87 correction), many of these methods
are ill-suited for the analysis of microarray data. This
is because: 1) most techniques assume variable indepen-
dence; and 2) many are considered too stringent.

The requirement of variable independence is clearly
not met in microarray experiments because genes are
involved in complicated regulatory mechanisms and
pathways.88 In fact, the complex interaction between
the expression of genes on specific pathways is required
for homeostasis and is also part of disease processes.
For example, the injection of endotoxin in peripheral
blood to human volunteers results in differential expres-
sion of families of genes involved in the immune
response.89 The expression levels of these genes are,
therefore, dependent on each other.

The second drawback of the classical multiple com-
parison correction methods is that they are too strin-
gent, or ‘‘conservative.’’ For example, the Bonferoni
correction required to adjust for simultaneously testing
20,000 genes demands that every individual gene have
a P value lower than .0000005 (.01/20,000) in order to be
significant. Such P values would require very small var-
iances, which are almost never achieved with the level of
noise intrinsic to the current microarray technologies.
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Because of this, it is generally thought that more recent
techniques, such as Holm’s82 or the False Discovery
Rate (FDR),86 are better suited for microarray analysis.

Any correction for multiple comparisons allows the
investigator to specify the number of false positive
results at the level of the entire experiment or the
‘‘family-wide error rate’’ (FWER). Most investigators
accept a FWER of 5%.90

Sample size calculation
Sample size is a statistical term that refers to the number
of measurements in a given experiment. The sample size
affects the validity of a class comparison study. The
computation of the sample size requires information
about the: 1) minimum fold change that the investigator
wishes to reliably detect; 2) gene expression variance
within each experimental group; and 3) desired statisti-
cal power. It is intuitive that larger changes are easier to
detect. For instance, if everything else remains the same,
more measurements (samples) are needed to reliably
detect a 1.5-fold change rather than a 100-fold change.
In other words, a smaller minimum detectable change
will require a larger sample size. Similarly, if a gene
shows a high degree of expression variability in the
normal population (has a large variance), more mea-
surements will be needed to prove that a real change
exists between the control and the study groups (eg,
normal pregnancy vs pre-eclampsia). This means that
larger variances will require larger sample sizes. Finally,
it may be possible to detect 2 to 3 differentially expressed
genes with only a few clinical samples. However, if the
goal is to detect most of the differentially expressed
genes, a large number of samples will be required. In
other words, the greater the desired power, the larger
the sample size. For instance, a few patients with pre-
eclampsia will allow the physician to observe 2-3 typical
complications associated with it. However, in order to
observe the entire range of complications that are
associated with this disease, a larger number of patients
is needed.

In practice, the cost of the experiment and the
number of clinical samples available are major determi-
nants of the experimental design. Researchers often use
as a guideline a commonly accepted90 minimum number
of replicates, such as 5 samples per group. However, this
may not always provide enough power to detect changes
and may be completely inadequate for those genes that
exhibit large within-group gene expression variability.

The above discussion focused on the sample size
calculation for class comparison studies. The reader
should note that for other types of applications, such as
class prediction (to be discussed in the next section),
other requirements apply. The interested reader is
referred to more detailed resources about sample size
calculations for microarray experiments.91,92
Class prediction studies

Class prediction experiments are approached using clas-
sical statistical methods (eg, discriminant analysis) or
‘‘machine learning techniques’’ (eg, neural networks).93-96

Figure 4 A comparison of two gene selection methods illus-

trated in a, A, M vs. A plot and, B, in a volcano plot. Each cir-
cle corresponds to one gene. M represents the average log-ratio
(log fold-change) in a two group comparison. The 2-fold

change method selects as differentially expressed all genes
above the line M=1 and below the line M=�1 (red lines in
both figures). In contrast, a moderated t-test will only select

the genes represented by solid red circles. Note that not all
genes with a fold change of two or more have significant
P values (the P values are shown on the vertical axis of the
volcano plot, in B). Conversely, not all the genes with signifi-

cant P values have a fold change of two or more (note the solid
dots between the two red lines).
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In class prediction applications, the classes are prede-
fined (eg, women with and without pre-eclampsia) and
the goal is to build a ‘‘classifier’’ able to distinguish be-
tween these classes based on the gene expression profiles
of the samples.

In order to achieve this goal, the existing complex
relationship between the class membership (pre-eclamp-
sia or normal pregnancy) and the expression values of
the genes needs to be ‘‘learned’’ first.

A classifier is a mathematical model such as
peZa � g1Cb � g2; where g1 and g2 are the expression
values of two potential pre-eclampsia marker genes, a
and b are two yet unknown parameters, and pe is a var-
iable that indicates whether or not the patient has pre-
eclampsia. The high-throughput nature of microarray
experiments generates a situation in which the number
of variables (number of genes tested) exceeds the num-
ber of samples in the experiment. This creates a number
of difficulties that have been collectively described as the
‘‘curse of dimensionality.’’97 Hence, the first step in class
prediction is a ‘‘dimensionality reduction,’’ which usu-
ally involves a ‘‘variable selection.’’ In our example,

Figure 5 k-Nearest Neighbor (k-NN) classification rule. This

method is used in class prediction studies. The figure illustrates
the 10-Nearest Neighbor (10-NN) rule in a two-class predic-
tion problem using the expression levels of two genes (gene

1 on the horizontal axis, gene 2 on the vertical axis). The mem-
bers of the two classes are designated by circles and squares,
and their membership is known in advance. The triangle repre-
sents the expression values for these two genes for a new sam-

ple that needs to be classified. The large dotted circle contains
the 10 nearest neighbors of the new sample. A neighbor cor-
responds to a sample that has similar expression values.

Among the closest 10 neighbors of the red triangle, 6 are
squares and 4 are circles. Therefore, the 10-NN rule predicts
that the new sample belongs in the square class. Note that

if we used only one neighbor (1-Nearest Neighbor rule), the
same sample would be classified as belonging to the other class
(circles), because the closest neighbor of the new sample (red

triangle) is a circle and not a square.
this step would involve identifying the two marker
genes, g1 and g2. This step involves a class comparison
and, hence, some of the statistical methods described
in the previous section of this article can be useful.

The model is then ‘‘trained’’ to correctly classify the
existing expression profiles. The training is the process in
which the internal parameters of a classifier are esti-
mated. In our example, this step involves finding the
specific values of a and b. Then, the classifier is tested in
a separate group of patients. The purpose of this testing
is to ‘‘validate’’ the resulting classifier (model) and calcu-
late its diagnostic indices (specificity and sensitivity) and
predicted values (positive and negative). This step is cru-
cial in order to obtain an unbiased estimate of the per-
formance of the classifier.

The simplest way to assess the performance of a
classifier is the ‘‘hold-out validation’’ procedure in which
the data is split into two sub-sets: a ‘‘training’’ set and
a ‘‘testing’’ set. The training, or learning, set is used to
build the classifier, while the testing set is used to assess
its performance. By keeping one subset of the data aside
for testing purposes, the hold-out validation procedure
deprives the learning process of potentially useful ex-
amples that could have been used to improve the
training or learning step. Alternatives to the hold-out
validation procedure are ‘‘cross-validation’’ and ‘‘boot-
strapping.’’98 These methods use data more efficiently
while still providing reliable estimates of the perfor-
mance of the classifier.

Classifiers vary in complexity from simple linear
discriminant models and k-Nearest-Neighbor classifiers,
to more complex methods, such as neural networks.
Special types of neural networks include multilayer
perceptrons, radial basis functions, support vector
machines, etc.99-103 Figure 5 illustrates the k-Nearest
Neighbor approach in a class prediction experiment.

Class discovery studies

Class discovery involves analyzing a given set of gene
expression profiles with the goal of discovering sub-
groups that share common features. The example de-
scribed earlier in this article involved measuring the
expression profiles of a large number of patients with
pre-eclampsia with the goal of classifying them into sub-
groups of patients having similar expression profiles.
The medical and biological interest of this effort is aimed
at understanding the mechanisms of disease underlying
the syndrome of pre-eclampsia. We have proposed that
pre-eclampsia, just as premature labor, preterm PROM,
SGA, and LGA are obstetrical syndromes, is caused by
multiple etiologies or mechanisms of disease.104,105 One
approach to discover the mechanisms of disease in-
volved is to ask, ‘‘how many sub-groups exist among
patients with pre-eclampsia?’’ The definition of the sub-
groups will be based on the expression profiles of the
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genes monitored. Class discovery can also be useful to
identify different stages of severity of disease. Although
this has been traditionally done using clinical and stan-
dard laboratory parameters, it is possible that gene
expression profiling will contain information not mea-
surable by standard clinical and routine laboratory
methods. Another application of class discovery ex-
periments is to identify gene groups that may behave
similarly in a disease state. For example, interleukin
(IL)-1 is upregulated in the chorioamniotic membranes
of patients with histologic chorioamnionitis.14 With a
genome-wide survey, it may be possible to determine
other genes that have an expression profile similar to
IL-1 in patients with chorioamnionitis.

An analysis method often used for class discovery
is ‘‘cluster analysis’’ or clustering. Clustering aims at
dividing the data points (genes or samples) into groups
(clusters) using measures of similarity, such as correla-
tion or Euclidean distance.106-123

Some of the most frequently used clustering tech-
niques include ‘‘hierarchical’’ clustering and ‘‘k-means’’
clustering. Hierarchical clustering creates a hierarchical,
tree-like structure of the data. This is sometimes referred
to as a ‘‘dendrogram’’ (Figure 6). The results of cluster-
ing may also be displayed using a ‘‘heat map.’’ This term
refers to any display in which intensities are mapped on
a color scale (for details on the interpretation of heat
maps, see the legend of Figure 6). The reader should
be aware that a heat map does not necessarily mean
that clustering has been performed (for example, Figures
3 and 6 are both heat maps, but clustering had been
performed only in Figure 6).

A hierarchical clustering can be constructed using
either a ‘‘bottom-up’’ or a ‘‘top-down’’ approach. In a
‘‘bottom-up’’ approach, each gene/sample is initially
considered a cluster per se. Subsequently, the clusters
are iteratively grouped based on their similarity. In
contrast, the ‘‘top-down’’ approach starts with a unique
cluster containing all data points. This initial cluster is
iteratively split into smaller clusters until each cluster
contains a single gene.

The k-means clustering algorithm starts with a pre-
defined number of cluster centers (k) specified by the
user. Data points (eg, expression profiles) are assigned
to these centers based on their distance from (similarity
to) each center. Subsequently, an iterative process
involves re-calculating the position of the cluster centers
based on the current membership of each cluster and re-
assigning the samples to the k-clusters. The algorithm
continues until the clusters are stable, ie, there is no
further change in the assignment of the data points.42

Besides the type of clustering (eg, hierarchical or
k-means), investigators need to make other choices
when employing this technique, including the: 1) ‘‘dis-
tance metric;’’ and 2) ‘‘type of linkage’’ (if appropriate).
The distance used by the clustering defines the desired
notion of similarity between the expression profiles of
two individual samples. Measures of similarity that are
often used include ‘‘Euclidean’’ distance and ‘‘correla-
tion’’ distance, although other options are available. The
linkage defines the desired notion of similarity between
two groups of measurements. For instance, the ‘‘average
linkage’’ uses the mean of the distances between all
possible pairs of measurements between the two groups.
An extensive discussion of these issues, including the
properties of each distance/linkage/clustering algorithm,
common pitfalls and recommendations, can be found in
the literature.42

Unfortunately, the popularity of clustering tech-
niques has reached such proportions that they are

Figure 6 Hierarchical clustering using one-channel micro-
array data. This figure combines a ‘‘heat map,’’ which is the

part of the figure containing colors (red, green, and black),
with two dendrograms. Dendrograms are the tree-like struc-
tures displayed above and to the left of the heat map. The

rows represent genes identified by the numbers on the right
of the figure. The individual patient samples are shown as col-
umns (1 column per sample). The color represents the expres-
sion level of the gene. Red represents high expression, while

green represents low expression. The expression levels are con-
tinuously mapped on the color scale provided at the top of the
figure. The dendrograms provide some qualitative means of

assessing the similarity between genes and between patient
samples. Note that the columns contain samples from two
types of patients, A and B. Type A may represent samples

from normal women and type B from women with pre-eclamp-
sia. All women with the same diagnosis are grouped (clustered)
together. This analysis was performed with the TM4 software

suite (http://www.tm4.org).

http://www.tm4.org
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sometimes mistakenly taken as the ultimate analysis
method of microarray data. Most authors feel the need
to include a clustering diagram in their reports. How-
ever, clustering is not always appropriate or informative.
In some cases, clustering is unnecessary, whereas in
others, it can be misleading.

Let us consider, for instance, a class comparison
problem in which the goal is to identify differentially
expressed genes. Whichever method is used to infer
differential expression, the result will be a set of genes
with expression values that are different between the
groups. In such circumstances, performing cluster anal-
ysis on the subset of differentially regulated genes
is unnecessary. If performed, the cluster diagram will
be aesthetically appealing, showing the usual color dif-
ferences between the groups of interest. Yet, such
clustering will be devoid of meaningful information.
This is because the genes involved in the clustering have
been chosen precisely because they were different be-
tween groups. Clustering brings no additional informa-
tion. One could argue that the dendrogram itself (ie, the
membership in various subclusters and the relationships
between such clusters) will provide information regard-
ing the similarity of various samples. However, these
things will be drastically influenced by previous gene
selection and can seldom be considered as representative
of the samples themselves. A ‘‘pretty’’ clustering figure
does not offer biological insight per se, nor does it prove
the appropriateness of the statistical analysis already
performed.42

Similarly, clustering is not useful in class prediction
problems. Developing a classifier and then clustering the
genes used as discriminatory variables in this model
would do little to increase the degree of confidence in the
quality or validity of the classifier.

Clustering is, however, a useful tool to address a
‘‘class discovery problem,’’ in which the patient samples
have been profiled and the goal is to conduct an
exploratory analysis to determine if there are groups
(of genes or clinical samples) that share similarities.

Functional profiling

In addition to generating a large amount of data
per experiment, microarray studies create a new chal-
lenge: to transform information into knowledge. The
ultimate goal of biological sciences in general, and
microarray experiments in particular, is to improve the
understanding of the mechanisms of disease. This is not
accomplished by obtaining a list of differentially ex-
pressed genes, which is often the output of a class
comparison study. There is growing consensus about the
need to go much further at the level of biological
processes that happen on various pathways.

A computerized analysis approach using Gene On-
tology (GO) was proposed to address this task.124,125
This approach takes a list of differentially expressed
genes and uses a statistical analysis to identify the GO
categories (eg, biological processes, etc) that are over-
or under-represented in the condition under study.
Given a set of differentially expressed genes, this ap-
proach compares the number of differentially expressed
genes found in each GO category of interest with the
number of genes expected to be found in the same cate-
gory just by chance. If the observed number is substan-
tially different from the one expected just by chance, the
category is reported as significant. A statistical model
(eg, hypergeometric distribution) can be used to calcu-
late a P value (Figure 7).126,127 Currently, over 20 soft-
ware packages are available to perform this task.30

Despite widespread utilization, this approach has limita-
tions related to the type, quality, and structure of the an-
notations available.30 An alternative approach for
analysis considers the distribution of the differentially
expressed genes in the entire set of genes represented
on the array and performs a functional class scoring,
which also allows adjustments for gene correla-
tions.128,129 Arguably, the state-of-the-art in this cate-
gory, the Gene Set Enrichment Analysis (GSEA),130-132

ranks all genes based on the correlation between their
expression and the given phenotypes. GSEA has also
been shown to have some deficiencies.133

Novel ideas have started to appear in this area
addressing some of the issues above.30 A latent semantic
indexing approach (LSI) has been proposed as a tool
able to analyze the semantic content of annotation data-
bases and find incomplete or incorrect annotations.134

GoToolBox offers a different tool (GO-Proxy) to iden-
tify clusters of related terms. MAPPFinder,135 Pathway-
Express,136 Cytoscape,137 Pathway Tools,138 Pathway
Processor139 and MetaCore140 are examples of tools
available to expand the secondary analysis by including
metabolic or regulatory pathway information. Other re-
lated tools can be found on the GO tools page (http://
www.geneontology.org/GO.tools.shtml).

Epistemological foundation for the
interpretation of microarray results

Epistemology is a discipline concerned with the nature
and scope of knowledge.141 In other words, epistemol-
ogy is aimed at the fundamental questions: What is the
validity of acquired knowledge in science? What are the
limits of what is knowable? Much of the literature on
microarray analysis has focused on the development,
utilization and interpretation of statistical techniques.
However, questions have been raised about the validity
of many assumptions made by the statistical techniques.
Mehta, Tanik and Allison have proposed an epistemo-
logical foundation of statistical methods for high-dimen-
sional biology.142 The following section of this article
will review key concepts used in the literature, such as

http://www.geneontology.org/GO.tools.shtml
http://www.geneontology.org/GO.tools.shtml


Tarca, Romero, and Draghici 383
Figure 7 An example of functional profiling. The figure shows the significant biological processes represented in a set of genes
differentially expressed between two clinical groups. This type of analysis adds another dimension to the interpretation of micro-

array data. The biological processes are represented as bars on the right side of the graph. The length of the bar represents the num-
ber of genes involved in that specific biological process. This analytical tool provides a raw and a corrected p-value for each
biological process. Note that the biological process ‘‘protein folding’’ is represented by 15 genes, while ‘‘signal transduction’’ is rep-

resented by 18 genes (the number of genes is shown under the ‘‘Total’’ column). However, the P value of ‘‘protein folding’’ is zero,
indicating it is highly significant, while the P value of ‘‘signal transduction’’ is higher than the usual .05 significance threshold, show-
ing it is not significant. This illustrates the fact that the number of genes in a given category cannot be used to assess its significance.

This analysis was performed with Onto-Express (http://vortex.cs.wayne.edu).124
the sensitivity, accuracy and reproducibility of the data
derived from microarray experiments. Together, these
elements delineate the current epistemological limita-
tions of this technology.

Sensitivity
The detection limit (sensitivity) ranges between 1 and 10
copies of mRNA per cell, depending on the specific
technology, cell type, etc.143 This sensitivity may be in-
sufficient to detect biologically important changes for
genes with low levels of expression, such as transcription
factors.144
Accuracy
When microarray experiments are conducted within
their optimal dynamic range, measurements reflect the
magnitude and direction of expression changes of ap-
proximately 70-90% of genes. It is noteworthy that the
magnitude of expression changes observed in micro-
array experiments is often different from those measured
with other technologies, such as real-time quantitative
reverse transcriptome polymerase chain reaction (qRT-
PCR). In general, microarray data exhibit a compres-
sion of the fold changes when compared to the fold
change derived from qRT-PCR.145

http://vortex.cs.wayne.edu
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Microarrays (both single and dual channel) tend to
measure ratios more accurately than absolute expression
levels. For example, in the most comprehensive study,
which measured the expression of 1400 genes by qRT-
PCR, Czechowski et al146 found poor correlation
between normalized data produced by qRT-PCR and
normalized data produced by Affymetrix arrays in the
same RNA sample. However, when the ratios of the
expression levels between two different groups (RNA
from shoots and roots of Arabidopsis) were compared,
the correlation between RT-PCR and microarray results
was as high as 0.73 for the most highly expressed set
of 50 genes. Other studies have made similar obser-
vations.143 Collectively, these observations suggest that
two different methodologies used to assess expression
change tend to agree when the magnitude of change in
gene expression is large.

Reproducibility
Most microarray platforms produce highly repro-
ducible within-platform measurements when operating
within their range of sensitivity. From this perspective,
oligonucleotide arrays (Affymetrix, Agilent and Code-
link)147,148 seem to perform better than cDNA microar-
rays, providing correlation coefficients of above 0.9 in
technical replicates using the same array type. However,
if the same sample is hybridized on different array types
(eg, Affymetrix HG95Av2 vs. Affymetrix HG133), the
correlation coefficients may be lower because the same
genes may be represented by different sets of probes
(probe sets) in the two arrays. For other platforms,
such as cDNA microarrays or the Mergen platform,
the technical reproducibility may also be substantially
lower. For example, the reported Pearson correlation
coefficient between technical replicates can range be-
tween the disappointing level of 0.5 and the more reas-
suring level of 0.95.148-150

Cross-platform reproducibility studies undertaken so
far148,149,151 have identified two main problems. First,
microarrays are not able to accurately measure genes ex-
pressed at low levels. Therefore, excluding these genes
from the comparison will improve the correlation be-
tween different platforms.143 A second and very impor-
tant problem is that not all probes expected to
represent specific genes perfectly match the targeted
genes as required by the basic principles of the technol-
ogy.152,153 This is the equivalent of using the wrong
antibody to measure a specific hormone in a radio-
immunoassay or an ELISA. This issue can, in principle,
be addressed by re-mapping the probe sequences and cal-
culating expression values using only those probes that
have the appropriate sequence for the genes they are sup-
posed to represent.

Due to the reasons stated above, data from different
platforms can not easily be compared or merged.154-157

It is important to note that the degree of agreement
among different platforms improves substantially when
the results are examined from the perspective of the bi-
ological process or molecular functions involved (func-
tional profiling), rather than from the expression levels
of individual genes. The reader is encouraged to examine
the issues described in this paragraph when assessing
studies comparing different microarray platforms.

Conclusion

Microarrays are able to simultaneously monitor the
expression levels of thousands of genes. Such gene
expression information can be used in medicine for
comparing clinically relevant groups (eg, healthy vs
diseased), uncovering new subclasses of diseases, and
predicting clinically important outcomes, such as the
response to therapy and survival. However, the im-
proved understanding that can be gained with this
technology is critically dependent on the quality of the
analytical tools employed. This article was written to
provide the obstetrician and gynecologist with an intro-
duction to the subject, as well as alert the readership
about some of the potential pitfalls associated with the
analysis of these large datasets. The literature cited
provides additional sources to improve the understand-
ing of this complex subject.
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